前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的高一函數(shù)的單調(diào)性主題范文,僅供參考,歡迎閱讀并收藏。
那么高考函數(shù)試題的難度到底有多大?本刊特做此專題,對2008年全國高考函數(shù)考查的內(nèi)容進行全面界定和分析,以期幫助同學(xué)們樹立信心,學(xué)好函數(shù)知識.
一、考查函數(shù)的定義及求值問題
例1(陜西卷理科)定義在R上的函數(shù)f(x)滿足 f(x+y)=f(x)+f(y)+2xy(x,y∈R), f(1)=2,則f(-3)等于()
A. 2 B. 3 C. 6 D. 9
解析 函數(shù)f(x)滿足f(x+y)=f(x)+f(y)+2xy(x,y∈R), f(1)=2,
f(2)=f(1+1)=f(1)+f(1)+2×1×1=2+2+2=6.
f(4)=f(2+2)=f(2)+f(2)+2×2×2=6+6+8=20.
又f[4+(-3)]=f(4)+f(-3)+2×4×(-3)=f(1),
f(-3)=f(1)-f(4)+24=2-20+24=6. 故選C.
點評本題用高一的知識就可以求解,難度指數(shù)(難). 對于函數(shù)求值的考查,一般都涉及到函數(shù)的周期性、奇偶性等性質(zhì). 具體函數(shù)的求值問題要先求出函數(shù)解析式,再求解. 而對于抽象函數(shù)的求值問題,則先通過遞推關(guān)系式的變形,利用已知函數(shù)值進行求解,往往需要對某些變量進行適當?shù)馁x值,這是一般向特殊轉(zhuǎn)化的必要手段.
【相關(guān)鏈接】
(山東卷文科)已知f(3x)=4xlog23+233,則f(2)+f(4)+f(8)+…+f(28)的值等于 .
解析 f(3x)=4xlog23+233=4log23x+233,
f(x)=4log2x+233,
f(2)+f(4)+f(8)+…+f(28)=(4log22+233)+(4log24+233)+(4log28+233)+…+(4log228+233)=4(1+2+3+…+8)+8×233=2008. 故填2008. (高一,)
二、考查函數(shù)定義域問題
例2(安徽卷理科)函數(shù)f(x)=的定義域為.
解析由題意得 |x-2|-1≥0,x-1>0,x-1≠1. 解得 x≥3或x≤1,x>1,x≠2. 所以x≥3.故函數(shù)的定義域為{x|x≥3}.
點評本題用高一的知識就可以求解,難度指數(shù)(易). 函數(shù)定義域是高考考查的重點內(nèi)容,一般情況下,函數(shù)的定義域就是指使這個式子有意義的所有實數(shù)x的集合,但實際問題的定義域必須具有實際意義,對含參數(shù)的函數(shù)定義域必須對字母參數(shù)分類討論. 在一些具體函數(shù)綜合問題中,函數(shù)定義域往往具有隱蔽性,所以在研究這些問題時,必須樹立“定義域優(yōu)先”的原則.
【相關(guān)鏈接】
(1) (湖北卷理科)函數(shù)f(x)=ln(+)的定義域為()
A. (-∞,-4]∪[2,+∞) B. (-4,0)∪(0,1)
C. [-4,0)∪(0,1] D. [-4,0)∪(0,1)
解析要使函數(shù)f(x)=ln(+)有意義,則
x≠0,+>0,解得-4≤x
函數(shù)f(x)=ln(+)的定義域為[-4,0)∪(0,1). 故選D. (高一,)
(2) (江西卷文科)若函數(shù)y=f(x)的定義域是[0,2],則函數(shù)g(x)=的定義域是()
A. [0,1] B. [0,1)
C. [0,1)∪(1,4] D. (0,1)
解析因為函數(shù)y=f(x)的定義域是[0,2],所以,要使函數(shù)g(x)=有意義,必滿足:x-1≠0,0≤2x≤2. 解得0≤x
三、考查函數(shù)值域(最值)問題
例3(江西卷理科)若函數(shù)y=f(x)的定義域是[,3],則函數(shù)F(x)= f(x)+的值域是()
A. [,3] B. [2,]
C. [,] D. [3,]
解析因為函數(shù)y=f(x)的值域是[,3], 所以≤f(x)≤3. 又因為函數(shù)F(x)=f(x)+在區(qū)間[,1]上單調(diào)遞減,在區(qū)間[1,3]上單調(diào)遞增, 所以當f(x)=1時,函數(shù)F(x)=f(x)+取得最小值2.
又當f(x)=時,函數(shù)F(x)=f(x)+的值為;當f(x)=3時,函數(shù)F(x)=f(x)+的值為, 所以函數(shù)F(x)=f(x)+的最大值為.
故函數(shù)F(x)=f(x)+的值域是[2,].
點評本題要用到高二的知識求解,難度指數(shù)(中). 函數(shù)值域(最值)問題是高考考查頻率很高的內(nèi)容,幾乎每年高考在選擇題或填空題中都會涉及到. 求函數(shù)最值問題一般需要借助于函數(shù)值域的常用方法,此類問題要注意函數(shù)定義域在求最值中的制約作用. 利用函數(shù)的單調(diào)性可以求函數(shù)的值域、最大值、最小值,而且可以達到化難為易、化繁為簡的效果.
【相關(guān)鏈接】
(1) (重慶卷文科)函數(shù)f(x)=的最大值為()
A. B. C. D. 1
解析函數(shù)f(x)=的定義域為[0,+∞).
f(x)==≤=, 當且僅當=,即當x=1時上式等號成立.
函數(shù)f(x)=的最大值為. 故選B. (高二,)
(2) (重慶卷理科)已知函數(shù)y=+的最大值為M,最小值為m,則的值為()
A. B. C. D.
解析函數(shù)y=+的定義域為{x|-3≤x≤1}.
y2=(+)2=4+2
=4+2,
當x=-1時,y2max=4+2=8,
y=2,即M=2.
當x=-3,1時,
y2min=4+2=4+2=4,
ymin=2,即m=2.
==. 故選C. (高一,)
四、考查函數(shù)圖象問題
例4(全國卷Ⅰ理科)設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式
A. (-1,0)∪(1,+∞) B. (-∞,-1)∪(0,1)
C. (-∞,-1)∪(1,+∞) D. (-1,0)∪(0,1)
解析由題意知=
點評本題用高一的知識就可以求解,難度指數(shù). 近年來高考試題加強了對數(shù)形結(jié)合思想的考查,最明顯的是高考試卷中函數(shù)圖象考題明顯增多. 要掌握一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的圖象和性質(zhì),在此基礎(chǔ)上,理解、掌握常見的圖象平移、對稱及伸縮變換,通過對圖象的識別來考查函數(shù)的性質(zhì). 函數(shù)圖象形象地顯示了函數(shù)的性質(zhì),為研究數(shù)量關(guān)系提供了“形”的直觀性,它是探求解題途徑,獲得解題方法的重要工具,通過借助于圖形的直觀性,以圖助算,就可避免繁瑣的計算. 因此,以數(shù)形結(jié)合為切入點,可化難為易.
五、考查求函數(shù)解析式問題
例5(上海卷理科)設(shè)函數(shù) f(x)是定義在R上的奇函數(shù). 若當x∈ (0,+∞)時, f(x)=lgx,則滿足f(x)>0的x的取值范圍是 .
解析 f(x)是定義在R上的奇函數(shù),且當x∈(0,+∞)時, f(x)=lgx.
當x∈(-∞,0)時, f(x)=-lg(-x).
f(x)>0, x>0,lgx>0或x0 x>1或-1
點評本題用高一的知識就可以求解,難度指數(shù). 求函數(shù)的解析式,要注意所求解析式的定義域,要在相關(guān)定義域下通過化抽象為具體的方法,把問題轉(zhuǎn)化.
【相關(guān)鏈接】
(全國卷Ⅰ理科)若函數(shù)y=f(x-1)的圖象與函數(shù)y=ln+1的圖象關(guān)于直線y=x對稱,則f(x)=()
A. e2x-1 B. e2x C. e2x+1 D. e2x+2
解析 函數(shù)y=f(x-1)的圖象與函數(shù)y=ln+1的圖象關(guān)于直線y=x對稱,
函數(shù)y=f(x-1)與函數(shù)y=ln+1互為反函數(shù), y-1=e2(x-1),
函數(shù)y=f(x-1)=e2(x-1), f(x)=e2x. 故選B. (高一,)
六、考查抽象函數(shù)的奇偶性問題
例6(重慶卷理科)若定義在R上的函數(shù)f(x)滿足:對任意x1,x∈R有f(x1+x)=f(x1)+f(x2)+1,則下列說法一定正確的是()
A. f(x)為奇函數(shù) B. f(x)為偶函數(shù)
C. f(x)+1為奇函數(shù) D. f(x)+1為偶函數(shù)
解析令x1=x2=0,得f(0)=2f(0)+1f(0)=-1.
又x1=-x2, 得f(x1-x1)=f(x1)+f(-x1)+1, 即f(0)=f(x1)+f(-x1)+1,
[f(x1)+1]+[f(-x1)+1]=0,即f(x)+1為奇函數(shù). 故選C.
點評本題用高一的知識就可以求解,難度指數(shù). 此題主要考查函數(shù)奇偶性. 我們把未給出具體解析式的函數(shù)稱為抽象函數(shù),由于這種表現(xiàn)形式的抽象性,使得直接求解思路難尋,但通過賦予恰當?shù)臄?shù)值,經(jīng)過運算與推理,不難得出結(jié)論.
【相關(guān)鏈接】
(安徽卷理科)若函數(shù)f(x)、g(x)分別為R上的奇函數(shù)、偶函數(shù),且滿足 f(x)-g(x)=ex,則有()
A. f(2)
C. f(2)
解析 函數(shù)f(x)、g(x)分別為R上的奇函數(shù)、偶函數(shù), f(-x)-g(-x)=-f(x)-g(x)=e-x,即f(x)+g(x)=-e-x. 聯(lián)立f(x)-g(x)=ex,f(x)+g(x)=-e-x, 解得f(x)=(ex-e-x),g(x)=-(e-x+ex). f(2)=(e2-e-2)=, f(3)=(e3-e-3)=, g(0)=-(e-0+e0)=-1. 又因為-1
七、考查函數(shù)周期性問題
例7(四川卷理科)設(shè)定義在R上的函數(shù)f(x)滿足f(x)?f(x+2)=13,若f(1)=2,則f(99)=()
A. 13 B. 2 C. D.
解析 f(1)=2, f(x)?f(x+2)=13, f(1)?f(1+2)=13,即f(3)=.又 f(x+2)?f(x+4)=13, f(x)=f(x+4),即函數(shù)y=f(x)是以4為周期的函數(shù), f(99)=f(4×24+3)=f(3)=. 故選C.
點評本題用高一的知識就可以求解,難度指數(shù). 本題主要考查函數(shù)的周期性知識,同時考查考生的理解和推理能力,求解時應(yīng)首先判斷出是周期函數(shù). 對于函數(shù)f(x)而言,若f(x+T)=f(x),則說f(x)的周期為T,一般在三角函數(shù)中應(yīng)用較多.
【相關(guān)鏈接】
(湖北卷文科)已知f(x)在R上是奇函數(shù),且滿足f(x+4)=f(x),當x∈(0,2)時, f(x)=2x2,則f(7)=()
A. -2 B. 2 C. -98 D. 98
解析 f(x)在R上是奇函數(shù), f(-x)=-f(x). f(x)滿足f(x+4)=f(x), f(x)是周期為4的周期函數(shù). 又當x∈(0,2)時, f(x)=2x2, f(7)=f(7-2×4)=f(-1)=-f(1)=-2×12=-2. 故選A. (高一,)
八、考查原函數(shù)與反函數(shù)的關(guān)系問題
例8(陜西卷理科)已知函數(shù)f(x)=2x+3, f -1(x)是f(x)的反函數(shù),若mn=16(m,n∈R+),則 f -1(m)+f -1(n)的值為()
A. -2 B. 1 C. 4 D. 10
解析由原函數(shù)與其反函數(shù)的關(guān)系得2x+3?2y+3=16,即2x+3?2y+3=22?22,所以x=y=-1,因此有 f -1(m)+ f -1(n)=-2. 故選A.
點評本題用高一的知識就可以求解,難度指數(shù). 由于原函數(shù)的定義域和值域分別是其反函數(shù)的值域和定義域,因此,反函數(shù)的定義域不能僅由其解析式來求,而應(yīng)該是原函數(shù)的值域. 此例主要是考查利用原函數(shù)與其反函數(shù)的關(guān)系解題,可以避開求反函數(shù)的麻煩,提高解題速度.
【相關(guān)鏈接】
(1) (北京卷文科)函數(shù)f(x)=(x-1)2+1(x
A. f -1(x)=1+(x>1) B. f -1(x)=1-(x>1)
C. f -1(x)=1+(x≥1)D. f -1(x)=1-(x≥1)
解析由f(x)=(x-1)2+1(x
f -1(x)=1-. 再由x1, f(x)>1,
f -1(x)=1-(x>1).故選B. (高一,)
(2) (遼寧卷理科)函數(shù)y=x+1,x
.
解析當x
當x≥0時,y=ex≥1, x=lny, y=lnx, 反函數(shù)為y=lnx,x≥1.
故函數(shù)y=x+1,x
九、考查函數(shù)單調(diào)性問題
例9(廣東卷理科)設(shè)k∈R,函數(shù)f(x)=, x
解析F(x)=f(x)-kx=-kx, x
F′(x)=-k, x
(1) 當x
①當k≤0時,函數(shù)F(x)在(-∞,1)上是增函數(shù).
②當k>0時,令F′(x)=0,得x=1-.
函數(shù)F′(x)在(-∞,1)上是增函數(shù),
函數(shù)F(x)在(-∞,1-)上,F′(x)0.
故函數(shù)F(x)在(-∞,1-)上是減函數(shù),在(1-,1)上是增函數(shù).
(2) 當x≥1時,F(x)=--kx, F′(x)=--k.
①當k>0時,F′(x)
②當k≤0時,令F′(x)=0,得x=1+,由于F′(x)在(1,+∞)上為增函數(shù),則在區(qū)間(1,1+)上,F′(x)0.
故函數(shù)F(x)在(1,1+)上是減函數(shù),在(1+,+∞)上是增函數(shù).
綜上可知,當k>0時,函數(shù)F(x)在(1,+∞)和(-∞,1-)上是減函數(shù),在(1-,1)上是增函數(shù).
當k≤0時,函數(shù)F(x)在(1,1+)上是減函數(shù),函數(shù)F(x)在(-∞,1)和(1+,+∞)上是增函數(shù).
點評本題要用到高三的知識才能求解,難度指數(shù). 本題在考查函數(shù)單調(diào)性的同時,側(cè)重考查分類討論思想在解題中的靈活應(yīng)用. 因為要判斷函數(shù)單調(diào)性,就必須先確定參數(shù)a的取值情況,就a=0和a≠0分別討論. 函數(shù)單調(diào)性是高考熱點問題之一,在歷年的高考試題中,考查或利用函數(shù)單調(diào)性的試題屢見不鮮,既可以考查用定義判斷函數(shù)的單調(diào)性,用反例否定函數(shù)不是單調(diào)函數(shù),求單調(diào)區(qū)間等問題,又可以考查利用函數(shù)的單調(diào)性求應(yīng)用題中的最值問題.
十、考查分段函數(shù)問題
例10(天津卷理科)已知函數(shù)f(x)=-x+1,x
A. {x|-1≤x≤-1}B. {x|x≤1}
C. {x|x≤-1} D. {x|--1≤x≤-1}
解析當x+1
點評本題用高一的知識就可以求解,難度指數(shù). 在處理分段函數(shù)問題時,要注意每段函數(shù)的定義域,然后注意求問題的并集.
十一、考查對數(shù)函數(shù)問題
例11(天津卷理科)設(shè)a>1,若存在一個常數(shù)c使得對于任意的x∈[a,2a],都有y∈[a,a2]滿足方程logax+logay=c,這時a的取值的集合為.
解析由方程logax+logay=c得y=.
又x∈[a,2a]且a>1,所以y∈[ac-1,ac-1].
對于任意的x∈[a,2a],都有y∈[a,a2],
[ac-1,ac-1][a,a2],即ac-1≥a,ac-1≤a2,
c-1≥loga2a,c-1≤2.
而滿足條件的常數(shù)c僅有一個,因此有l(wèi)oga2a=2,解得a=2.
點評本題用高一的知識就可以求解,難度指數(shù). 本題主要考查對數(shù)函數(shù)的單調(diào)性和簡單的對數(shù)方程的解法,在解題時,一定要注意不同的底,對數(shù)函數(shù)有不同的單調(diào)性. 函數(shù)最值是函數(shù)的主要內(nèi)容,它在數(shù)學(xué)各個分支及實際問題中有著廣泛的應(yīng)用,特別是基本初等函數(shù)(二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù))的最值問題,多年來一直是??疾凰サ臒狳c內(nèi)容之一.
十二、考查函數(shù)圖象問題
例12(遼寧卷理科)將函數(shù)y=2x+1的圖象按向量a平移得到函數(shù)y= 2x+1的圖象,則()
A. a=(-1,-1) B. a=(1,-1) C. a=(1,1) D. a=(-1,1)
解析將函數(shù)y=2x+1的圖象向左平移1個單位得到函數(shù)y=2x+1+1的圖象,再向下平移1個單位得到函數(shù)y=2x+1的圖象,即將函數(shù)y=2x+1的圖象按向量a=(-1,-1)平移得到函數(shù)y=2x+1的圖象. 故選A.
點評本題用高一的知識就可以求解,難度指數(shù). 函數(shù)圖象類試題,其求解策略是充分挖掘圖象信息,運用數(shù)形結(jié)合思想來解決問題.
【相關(guān)鏈接】
(1) (山東卷理科)函數(shù)y=lncosx-
AB CD
解析令y=lnu,u=cosx-
(2) (北京卷文科)如圖,動點P在正方體ABCD-A1B1C1D1的對角線BD1上,過點P作垂直于平面BB1D1D的直線,與正方體表面相交于M,N. 設(shè)BP=x,MN=y,則函數(shù)y=f(x)的圖象大致是()
A B C D
解析過對角線BD1作平面BB1D1D的垂面,設(shè)該垂面與AA1、CC1的交點分別為E、F,則E、F分別為AA1、CC1的中點,所以當動點P在對角線BD1上移動時,M、N則在菱形EBFD1上移動.
設(shè)∠D1BF=α(0
y=2xtanα.
當BD
y=2(BD1-x)tanα.
y=2xtanα,0
故函數(shù)y=f(x)的圖象大致是B. (高二,)
十三、考查指數(shù)函數(shù)的綜合問題
例13(上海卷理科)已知函數(shù)f(x)=2x-.
(1) 若f(x)=2,求x的值;
(2) 若2t f(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.
解析(1) 當x0, x=log(1+).
(2) 當t∈[1,2]時, 2t(22t-)+m(2t-)≥0,即m(22t-1)≥-(24t-1).
22t-1>0, m≥-(22t+1). t∈[1,2], -(1+22t)∈[-17,-5].
故m的取值范圍是[-5,+∞).
點評本題用高一的知識就可以求解,難度指數(shù). 此類問題以函數(shù)為依托,綜合指數(shù)函數(shù)、方程、不等式知識設(shè)計試題,題型設(shè)計新穎,別具一格,知識渾然一體,較好地體現(xiàn)了知識的整體性和綜合性,能突出對解決問題的方法及解決問題的能力的考查.
十四、考查絕對值不等式與函數(shù)綜合問題
例14(海南卷理科)已知函數(shù)f(x)=|x-8|-|x-4|.
(Ⅰ) 作出函數(shù)y=f(x)的圖象;
(Ⅱ) 解不等式|x-8|-|x-4|>2.
解析(Ⅰ) f(x)=4,x≤4,-2x+12,48.
圖象如下:
(Ⅱ) 不等式|x-8|-|x-4|>2,即f(x)>2,由-2x+12=2得x=5.
由函數(shù)f(x)圖象可知,原不等式的解集為{x|x
點評本題用高一的知識就可以求解,難度指數(shù). 本題考查了絕對值的意義、分段函數(shù)及其圖象、函數(shù)最值和不等式等知識,考查分類與整合的思想方法和數(shù)形結(jié)合的解題技巧. 分段函數(shù)是自變量在不同的取值范圍內(nèi),其對應(yīng)法則也不同的函數(shù). 分段函數(shù)不是幾個函數(shù),而是一個函數(shù).
十五、考查函數(shù)應(yīng)用問題
例15(江蘇卷理科)如圖,某地有三家工廠,分別位于矩形ABCD的兩個頂點A、B及CD的中點P處. AB=20 km,BC=10 km. 為了處理這三家工廠的污水,現(xiàn)要在矩形區(qū)域上(含邊界),且與A、B等距的一點O處,建造一個污水處理廠,并鋪設(shè)三條排污管道AO、BO、PO. 記鋪設(shè)管道的總長度為y km.
(1) 按下列要求建立函數(shù)關(guān)系式:
(i) 設(shè)∠BAD=θ(rad),將y表示成θ的函數(shù);
(ii) 設(shè)OP=x km,將y表示成x的函數(shù);
(2) 請你選用(1)中的一個函數(shù)關(guān)系式,確定污水處理廠的位置,使鋪設(shè)的污水管道的總長度最短.
解析(1)延長PO交AB于點Q,則AQ=10 km.
(i) 設(shè)∠BAO=θ(rad),則AO=,OQ=10tanθ,
則PO=10-10tanθ. 顯然有0≤θ≤,則
y=+10-10tanθ=+10(0≤θ≤).
(ii) 設(shè)OA=x km, 則OQ=(10≤x≤10).
所以y=2x+10-(10≤x≤10).
(2) 若選(i),則y′==.
令y′=0,解得θ=. 經(jīng)進一步研究知,當且僅當θ=時,y取最小值 10+10. 即當∠BAO=時,三條排污管道的總長度最短,最短長度為(10+10) km.
若選(ii),則y′=2+. 令y′=0,解得x=.
經(jīng)進一步研究知,當且僅當x=時,y取最小值10+10.
故當OA=時,三條排污管道的總長度最短,為(10+10) km.
點評本題要用高三的知識來求解,難度指數(shù). 近幾年來,高考試題帶動了一大批“以實際問題為背景,以函數(shù)模型為載體”的應(yīng)用題問世,解此類問題,建立函數(shù)模型是關(guān)鍵. 函數(shù)應(yīng)用性問題,題源豐富,內(nèi)容深刻,解法靈活多樣,是歷年高考應(yīng)用性問題的一個熱點. 解此題,正確理解增長率是關(guān)鍵.
十六、考查三個二次問題
例16(湖北卷理科)已知函數(shù)f(x)=x2+2x+a, f(bx)=9x2-6x+2,其中x∈R,a、b為常數(shù),則方程f(ax+b)=0的解集為 .
解析 f(bx)=(bx)2+2bx+a=9x2-6x+2, b2=9,2b=-6,a=2, b=-3,a=2.
f(ax+b)=(2x-3)2+2(2x-3)+2=4x2-8x+5.
又Δ=82-4×4×5=-16
點評本題用高一的知識就可以求解,難度指數(shù)為. 二次函數(shù)、二次不等式、二次方程是高中數(shù)學(xué)的重要內(nèi)容,它把中學(xué)數(shù)學(xué)各個分支緊緊地聯(lián)系在一起. 以“三個二次”為載體,綜合二次函數(shù)、二次不等式、二次方程交叉匯合處為主干,構(gòu)筑成知識網(wǎng)絡(luò)型代數(shù)推理題,在高考試題出現(xiàn)的頻率相當高.
【相關(guān)鏈接】
(湖北卷理科)水庫的蓄水量隨時間而變化,現(xiàn)用t表示時間,以月為單位,年初為起點,根據(jù)歷年數(shù)據(jù),某水庫的蓄水量(單位:億立方米)關(guān)于t的近似函數(shù)關(guān)系式為
V(t)=(-t2+14t-40)e+50,0
解析① 當0
又0
② 當10
又10
綜上得0
十七、考查函數(shù)與方程問題
例17(上海卷理科)方程x2+x-1=0的解可視為函數(shù)y=x+的與函數(shù)y=的圖象交點的橫坐標. 若方程x4+ax-4=0的各個實根x,x,…,xk(k≤4)所對應(yīng)的點(xi,)(i=1,2,…,k)均在直線y=x的同側(cè),則實數(shù)a的取值范圍是.
解析方程x4+ax-4=0的根可看做函數(shù)y=x3+a與函數(shù)y=的圖象交點的橫坐標,且交點在y=x的同側(cè).
函數(shù)y=與y=x的交點為(2,2),(-2,-2).
若函數(shù)y=x3+a也經(jīng)過(2,2),即2=23+a,則a=-6,此時y=x3+a與y=圖象交點,一個在y=x上,一個在y=x下方.
同理,若函數(shù)y=x3+a也經(jīng)過(-2,-2),即-2=(-2)3+a,則a=6,此時y=x3+a與y=圖象交點,一個在y=x上,一個在y=x上方.
由數(shù)形結(jié)合知,y=x3+a與y=圖象交點在y=x的同側(cè),則a>6或a
點評本題用高一的知識就可以求解,難度指數(shù). 函數(shù)與方程是兩個不同的概念,但它們之間有著密切的聯(lián)系,一個函數(shù)若有解析表達式,那么這個表達式就可看做一個方程,這樣,許多函數(shù)的問題可以用方程的方法來解決. 也就是說,對于函數(shù)y=f(x),當y=0時,就轉(zhuǎn)化為方程 f(x)=0;反之,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0,函數(shù)與方程這種相互轉(zhuǎn)化的關(guān)系十分重要.
十八、考查函數(shù)的多向綜合問題
例18(安徽卷理科)設(shè)函數(shù)f(x)=(x>0且x≠1).
(Ⅰ) 求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ) 已知2>xa對任意x∈(0,1)成立,求實數(shù)a的取值范圍.
解析(Ⅰ) f′(x)=-. 若f′(x)=0,則x=.
列表如下:
所以f(x)的單調(diào)增區(qū)間為(0,),單調(diào)減區(qū)間為(,1)和(1,+∞).
(Ⅱ) 在2>xa兩邊取對數(shù),得ln2>alnx. 由于x∈(0,1),所以>. ①
由(Ⅰ)的結(jié)果知,當x∈(0,1)時,f(x)≤f()=-e.
為使①式對任意求x∈(0,1)成立,當且僅當>-e,即a>-eln2為所求范圍.
點評本題要用高三的知識來求解,難度指數(shù). 本題主要考查導(dǎo)數(shù)的概念和計算、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、利用單調(diào)性求最值以及不等式的性質(zhì).
【相關(guān)鏈接】
(遼寧卷理科)設(shè)函數(shù)f(x)=-lnx+ ln(x+1).
(Ⅰ) 求f(x)的單調(diào)區(qū)間和極值;
(Ⅱ) 是否存在實數(shù)a,使得關(guān)于x的不等式f(x)≥a的解集為(0,+∞)?若存在,求a的取值范圍;若不存在,試說明理由.
解析(Ⅰ) f′(x)=--+=-.
當x∈(0,1)時, f′(x)>0,x∈(1,+∞)時, f′(x)
(Ⅱ) (i)當a≤0時,由于
f(x)==>0,
故關(guān)于x的不等式 f(x)≥a的解集為(0,+∞).
(ii)當a>0時,由f(x)=+ln(1+)知f(2n)=+ln(1+),其中n為正整數(shù). 且有l(wèi)n(1+)
又n≥2時, =-log2(e-1),n0>+1,且n0≥2,則f(2)=+ln(1+)0時, 關(guān)于x的不等式f(x)≥a的解集不是(0,+∞).
綜合(i)(ii)知,存在a,使得關(guān)于x的不等式f(x)≥a的解集為(0,+∞),且a的取值范圍為(-∞,0].
一、內(nèi)容上的銜接
對于高一數(shù)學(xué)教學(xué)來說,函數(shù)部分是重點,也是與初中數(shù)學(xué)知識銜接的切口。眾所周知,高中函數(shù)中的定義域、值域、函數(shù)的單調(diào)性等是初中數(shù)學(xué)中二次函數(shù)與圖象相關(guān)知識的一個延伸,是初中二次函數(shù)的深入研究,所以,在銜接的過程中,我們不能直接脫離初中的內(nèi)容,要有效地做好銜接,否則,只會讓學(xué)生出現(xiàn)“輕視”的態(tài)度,導(dǎo)致對這部分知識的學(xué)習(xí)“不上心”,影響學(xué)習(xí)效率。
二、教學(xué)方法的銜接
隨著課程改革的深入實施,“以生為本”“凸顯學(xué)生的課堂主體性”的理念被有效地貫徹到了初高中教學(xué)過程中。但是,在初中階段,學(xué)生所學(xué)的科目少,時間相對比較充足,即便是教師實施一言堂,也能在課下或者是自習(xí)課的時候一一解決學(xué)生存在的問題,但是,進入高中后,學(xué)習(xí)的內(nèi)容越來越多,教師的時間和精力無法滿足一對一的教學(xué),導(dǎo)致一些學(xué)生不適應(yīng)高中學(xué)習(xí)。所以,一些教師的“自主學(xué)習(xí)方法”“小組教學(xué)法”等新的教學(xué)方法就發(fā)揮不了其價值,嚴重影響了課堂效率的提高。因此,作為高中數(shù)學(xué)教師,我們要做好教學(xué)方法的銜接,以確保課程價值最大化實現(xiàn)。
例如,在教學(xué)“函數(shù)的單調(diào)性”時,為了做好初高中數(shù)學(xué)課堂的銜接,在本節(jié)課的授課時,我首先引導(dǎo)學(xué)生結(jié)合自己初中所學(xué)的內(nèi)容,對“y=x2+2x+1”函數(shù)的圖形進行繪制,并自主思考,對稱軸兩側(cè)的x的大小變化與y的大小變化之間有什么關(guān)系?鼓勵學(xué)生進行獨立思考。之后,順勢引導(dǎo)學(xué)生思考:“如果不從圖象中判斷函數(shù)的單調(diào)性,該如何判斷呢?”這樣的過程從內(nèi)容上做到了初高中數(shù)學(xué)的銜接,又能鍛煉學(xué)生的自主學(xué)習(xí)能力,同時也能確保高效課堂順利實現(xiàn)。
三、學(xué)習(xí)法的銜接
對于初中階段的學(xué)生來說,在學(xué)習(xí)方面比較依賴教師,習(xí)慣遇到問題就向老師請教,導(dǎo)致自主學(xué)習(xí)意識、自主探究能力等都相對較差,如果對剛進入高一的學(xué)生來說,我們直接實施“全放手”政策,就會導(dǎo)致學(xué)生出現(xiàn)“無人管”的心理,久而久之,學(xué)生就會對數(shù)學(xué)學(xué)習(xí)“懈怠”,最后,導(dǎo)致成績下滑。所以,在高中數(shù)學(xué)教學(xué)過程中,我們要重新培養(yǎng)學(xué)生的自主學(xué)習(xí)意識和能力,要幫助學(xué)生養(yǎng)成自主學(xué)習(xí)的良好習(xí)慣,使學(xué)生在自主求知的過程中真正成為課堂的主體。
總之,做好初高中的銜接工作是邁好高中的第一步。作為高中數(shù)學(xué)教師,我們要從思想上認識到銜接工作的重要性,并從多方面入手來做好銜接工作,進而使學(xué)生能夠以最快的速度走進高中、適應(yīng)高中,同時也確保數(shù)學(xué)課程目標得以高效實現(xiàn)。
一、指導(dǎo)思想:
(1)隨著素質(zhì)教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現(xiàn)代化”和“教育必須為社會主義現(xiàn)代化建設(shè)服務(wù),必須與生產(chǎn)勞動相結(jié)合,培養(yǎng)德、智、體等方面全面發(fā)展的社會主義事業(yè)的建設(shè)者和接班人”的指導(dǎo)思想和課程理念和改革要點。使學(xué)生掌握從事社會主義現(xiàn)代化建設(shè)和進一步學(xué)習(xí)現(xiàn)代化科學(xué)技術(shù)所需要的數(shù)學(xué)知識和基本技能。其內(nèi)容包括代數(shù)、幾何、三角的基本概念、規(guī)律和它們反映出來的思想方法,概率、統(tǒng)計的初步知識,計算機的使用等。
(2)培養(yǎng)學(xué)生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關(guān)數(shù)學(xué)知識分析問題和解決問題的能力。使學(xué)生逐步地學(xué)會觀察、分析、綜合、比較、抽象、概括、探索和創(chuàng)新的能力;運用歸納、演繹和類比的方法進行推理,并正確地、有條理地表達推理過程的能力。
(3) 根據(jù)數(shù)學(xué)的學(xué)科特點,加強學(xué)習(xí)目的性的教育,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的自覺心和興趣,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣,實事求是的科學(xué)態(tài)度,頑強的學(xué)習(xí)毅力和獨立思考、探索創(chuàng)新的精神。
(4) 使學(xué)生具有一定的數(shù)學(xué)視野,逐步認識數(shù)學(xué)的科學(xué)價值、應(yīng)用價值和文化價值,形成批判性的思維習(xí)慣,崇尚數(shù)學(xué)的理性精神,體會數(shù)學(xué)的美學(xué)意義,理解數(shù)學(xué)中普遍存在著的運動、變化、相互聯(lián)系和相互轉(zhuǎn)化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學(xué)會通過收集信息、處理數(shù)據(jù)、制作圖像、分析原因、推出結(jié)論來解決實際問題的思維方法和操作方法。
(6)本學(xué)期是高一的重要時期,教師承擔(dān)著雙重責(zé)任,既要不斷夯實基礎(chǔ),加強綜合能力的培養(yǎng),又要滲透有關(guān)高考的思想方法,為三年的學(xué)習(xí)做好準備。
二、學(xué)情分析及相關(guān)措施:
高一作為起始年級,作為從義務(wù)階段邁入應(yīng)試征程的適應(yīng)階段,該有的是一份執(zhí)著。他的特殊性就在于它的跨越性,理想的期盼與學(xué)法的突變,難度的加強與惰性的生成等等矛盾沖突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學(xué)理念,并落實在課堂教學(xué)的各個環(huán)節(jié),才能不負眾望。我們要從學(xué)生的認識水平和實際能力出發(fā),研究學(xué)生的心理特征,做好初三與高一的銜接工作,幫助學(xué)生解決好從初中到高中學(xué)習(xí)方法的過渡。從高一起就注意培養(yǎng)學(xué)生良好的數(shù)學(xué)思維方法,良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣,以適應(yīng)高中領(lǐng)悟性的學(xué)習(xí)方法。具體措施如下:
(1)注意研究學(xué)生,做好初、高中學(xué)習(xí)方法的銜接工作。
(2)集中精力打好基礎(chǔ),分項突破難點.所列基礎(chǔ)知識依據(jù)課程標準設(shè)計,著眼于基礎(chǔ)知識與重點內(nèi)容,要充分重視基礎(chǔ)知識、基本技能、基本方法的教學(xué),為進一步的學(xué)習(xí)打好堅實的基礎(chǔ),切勿忙于過早的拔高,上難題。同時應(yīng)放眼高中教學(xué)全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統(tǒng)籌安排,循序漸進,使高一的數(shù)學(xué)教學(xué)與高中教學(xué)的全局有機結(jié)合。
(3)培養(yǎng)學(xué)生解答考題的能力,通過例題,從形式和內(nèi)容兩方面對所學(xué)知識進行能力方面的分析,引導(dǎo)學(xué)生了解數(shù)學(xué)需要哪些能力要求。
(4)讓學(xué)生通過單元考試,檢測自己的實際應(yīng)用能力,從而及時總結(jié)經(jīng)驗,找出不足,做好充分的準備
(5)抓好尖子生與后進生的輔導(dǎo)工作,提前展開數(shù)學(xué)奧競選拔和數(shù)學(xué)基礎(chǔ)輔導(dǎo)。
(6)注意運用現(xiàn)代化教學(xué)手段輔助數(shù)學(xué)教學(xué);注意運用投影儀、電腦軟件等現(xiàn)代化教學(xué)手段輔助教學(xué),提高課堂效率,激發(fā)學(xué)生學(xué)習(xí)興趣。
三、教學(xué)進度安排表:
周次
時間
課時
內(nèi)容
重點
難點
第1周
8.31-9.6
5
集合的含義與表示、集合間的基本關(guān)系
會求兩個簡單集合的并集與交集;會求給定子集的補集;。
理解概念
第2周
9.7-9.13
5
集合的基本運算、函數(shù)的概念、函數(shù)的表示法
能使用Venn圖表達集合的關(guān)系及運算,會求一些簡單函數(shù)的定義域和值域;
能簡單應(yīng)用
第3周
9.14-9.20
5
單調(diào)性與最值、奇偶性
學(xué)會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì)
理解函數(shù)單調(diào)性、最大(小)值及幾何意義
第4周
9.21-9.27
5
指數(shù)與指數(shù)冪的運算、指數(shù)函數(shù)及其性質(zhì)
掌握冪的運算;探索并理解指數(shù)函數(shù)的單調(diào)性與特殊點
理解概念
第5周
9.28-10.4
5
國慶節(jié)放假
第6周
10.5-10.11
5
對數(shù)與對數(shù)運算、對數(shù)函數(shù)及其性質(zhì)
理解對數(shù)的概念及其運算性質(zhì),知道用換底公式
探索并了解對數(shù)函數(shù)單調(diào)性與特殊點;知道指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù)
第7周
10.12-10.18
5
冪函數(shù)
從五個具體的冪函數(shù)(y=x,y=x2, y=x3, y=x-1, y=x1/2)圖象中認識冪函數(shù)的一些性質(zhì)
冪函數(shù)的應(yīng)用
第8周
10.19-10.25
5
方程的根與函數(shù)零點、二分法求方程近似解
理解方程的根、函數(shù)的零點、函數(shù)圖像的關(guān)系
能夠借助計算器用二分法求相應(yīng)方程的近似解
第9周
10.26-11.1
5
幾類不同增長的模型、函數(shù)模型應(yīng)用舉例
對比指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;
結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義
第10周
11.2-11.8
5
期中復(fù)習(xí)及考試 分章歸納復(fù)習(xí)
第11周
11.9-11.15
5
任意角和弧度制、任意角的三角函數(shù)
了解任意角的概念和弧度制,能進行弧度和度的互化;
借助單位圓理解任意角三角函數(shù)的定義
第12周
11.16-11.22
5
三角函數(shù)的誘導(dǎo)公式、三角函數(shù)的圖像和性質(zhì)
掌握三角函數(shù)的圖像與性質(zhì)
借助三角函數(shù)線推導(dǎo)出誘導(dǎo)公式,能畫出y=sinx,y=cosx,y=tanx的圖像,了解三角函數(shù)的周期性
第13周
11.23-11.29
5
函數(shù)y=Asin(wx+q)的圖像
借助圖像理解正弦函數(shù)余弦函數(shù)正切函數(shù)的性質(zhì)
借助計算機畫出圖像觀察A w q對函數(shù)圖像變化的影響
第14周
11.30-12.6
5
三角函數(shù)模型的簡單應(yīng)用
會用三角函數(shù)解決一些簡單實際問題,體會三角函數(shù)是描述周期變化的重要函數(shù)模型
第15周
12.7-12.13
5
平面向量的實際背景及基本概念,平面向量的線性運算
掌握向量加、減法的運算,理解其幾何意義,掌握數(shù)乘運算及兩個向量共線的含義了解平面向量的基本定理掌握正交分解及坐標表示、會用坐標表示平面向量的加減及數(shù)乘運算
了解平面向量的基本定理掌握正交分解及坐標表示、會用坐標表示平面向量的加減及數(shù)乘運算
第16周
12.14-12.20
5
平面向量的基本定理及坐標表示,平面向量的數(shù)量積
理解用坐標表示的平面向量共線的條件,理解平面向量數(shù)量積德含義及其物理意義
體會平面向量數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的坐標表達式,會進行平面,向量數(shù)量積的運算、求夾角、及垂直關(guān)系
第17周
12.21-12.27
5
平面向量應(yīng)用舉例
用向量方法解決莫些簡單的平面幾何問題、力學(xué)問題與其他一些實際問題的過程,
體會向量是一種幾何問題,物理問題的工具,發(fā)展運算能力和解決實際問題的能力
第18周
12.28-1.3
5
兩角和與差點正弦、余弦和正切公式
能以兩角差點余弦公式導(dǎo)出兩角和與差點正弦、余弦和正切公式,二倍角的正弦、余弦和正切公式,了解它們的內(nèi)在聯(lián)系
了解它們的內(nèi)在聯(lián)系
第19周
1.4-1.10
5
簡單的三角恒等變換
第20周
1.11-1.17
5
期末復(fù)習(xí)
第21周
1.18-1.23
一、初高中數(shù)學(xué)知識“脫節(jié)”點
1.立方和與差的公式初中已刪去不講,而高中的運算還在用。
2.因式分解初中一般只限于二次項且系數(shù)為“1”的分解,對系數(shù)不為“1”的涉及不多,而且對三次或高次多項式因式分解幾乎不作要 求,但高中教材許多化簡求值都要用到,如解方程、不等式等。
3.二次根式中對分子、分母有理化初中不作要求,而分子、分母有理化是高中函數(shù)、不等式常用的解題技巧。
4.初中教材對二次函數(shù)要求較低,學(xué)生處于了解水平,但二次函數(shù)卻是高中貫穿始終的重要內(nèi)容。配方、作簡圖、求值域、解二次不等式、判斷單調(diào)區(qū)間、求最大、最小值,研究閉區(qū)間上函數(shù)最值等等是高中數(shù)學(xué)必須掌握的基本題型與常用方法。
5.二次函數(shù)、二次不等式與二次方程的聯(lián)系,根與系數(shù)的關(guān)系(韋達定理)在初中不作要求,此類題目僅限于簡單常規(guī)運算和難度不大的應(yīng)用題型,而在高中二次函數(shù)、二次不等式與二次方程相互轉(zhuǎn)化被視為重要內(nèi)容,高中教材卻未安排專門的講授。
6.圖像的對稱、平移變換,初中只作簡單介紹,而在高中講授函數(shù)后,對其圖像的上、下;左、右平移,兩個函數(shù)關(guān)于原點,軸、直線的對稱問題必須掌握。
7.含有參數(shù)的函數(shù)、方程、不等式,初中不作要求,只作定量研究,而高中這部分內(nèi)容視為重難點。方程、不等式、函數(shù)的綜合考查常成為高考綜合題。
8.幾何部分很多概念(如重心、垂心等)和定理(如平行線分線段比例定理,射影定理,相交弦定理等)初中生大都沒有學(xué)習(xí),而高中都要涉及。
另外,像配方法、換元法、待定系數(shù)法初中教學(xué)大大弱化,不利于高中知識的講授。
二、初高中數(shù)學(xué)教材與教學(xué)特點
(一)初高中數(shù)學(xué)教材特點:
1.初中教材是九年制義務(wù)教育用書,倡導(dǎo)全面提高學(xué)生素質(zhì),只要求學(xué)生了解的內(nèi)容多;高中教材是信息大集中,能力大發(fā)展,大學(xué)內(nèi)容多下放的指導(dǎo)用書,對培養(yǎng)學(xué)生能力提出了較高要求。
2.初中內(nèi)容“淺、少、易”,與學(xué)生生活貼近,簡單、具體形象;高中內(nèi)容“起點高,容量多,難度大”,概括性、抽象性、邏輯性明顯增強。
(二)初中數(shù)學(xué)教學(xué)特點:
1.從直觀、形象、具體事例出發(fā),概括出一般結(jié)論,然后師講解典型例題,學(xué)生反復(fù)練習(xí),直至掌握為止;
2.教師牽著學(xué)生走,教師怎么教,學(xué)生怎么學(xué),學(xué)生缺乏自主性,缺乏自學(xué)能力;
3.學(xué)生上課或聽、或思、或練,不會邊聽邊做筆記,更不會自我歸納、總結(jié);
4.學(xué)生思維單一、解題缺乏嚴密的邏輯性,推理能力差,尤其對代數(shù)中字母的可變性缺乏理解,分類討論的純粹性,完備性把握不夠。
(三)高中數(shù)學(xué)教學(xué)特點:
1.從特殊到一般,抽象性,概括性強;
2.教師注重數(shù)學(xué)思想方法教學(xué),要求學(xué)生舉一反三,從典型例題中悟出一般解題規(guī)律,在理解的基礎(chǔ)上形成解題技能;
3.教師引導(dǎo)學(xué)生自學(xué),讓學(xué)生逐步養(yǎng)成獨立思考,自我總結(jié)的良好習(xí)慣;
4.要求學(xué)生上課必須手腦并用,學(xué)會邊聽邊做筆記,養(yǎng)成錯題自覺正誤的良好習(xí)慣;
5.要求學(xué)生思維廣闊,考慮問題全面、深刻,全方位,多角度思考問題,善于從不同角度挖掘出問題的實質(zhì);
6.注重嚴密邏輯推理,知識的深度、廣度、難度、綜合性明顯加大。
三、處理好“教材銜接”的幾點措施
1.編好、用好“銜接教材”,為學(xué)生順利進入高中數(shù)學(xué)知識的學(xué)習(xí)掃清障礙
針對初高中教材內(nèi)容差異,市教科院已編寫一本初高中數(shù)學(xué)“銜接教材”,并對何時補充什么內(nèi)容作了安排。通過對“代數(shù)部分”一章的使用,學(xué)生初中基礎(chǔ)知識得到進一步鞏固,對高中教材適應(yīng)力較上屆明顯增強。
2.低起點、小步子、緩坡度、穩(wěn)進度;夯實基礎(chǔ),降低難度,逐步提升
在進行集合的基本概念,子、交、并、補的概念與性質(zhì)教學(xué)后,我們補充了“乘法公式”一節(jié),“因式分解”兩節(jié)。在上“一元二次不等式解法”之前,補充“一元二次方程的根與系數(shù)的關(guān)系”“含參數(shù)的一元二次方程根的分布”各兩課時,然后對含參數(shù)的一元二次不等式解法,一元二次方程、不等式與二次函數(shù)間的相互轉(zhuǎn)化進行適當拓寬,并將集合知識運用到不等式中,逐步提升學(xué)生粗象、概括能力,培養(yǎng)學(xué)生轉(zhuǎn)化、化歸意識。
3.適時進行學(xué)法指導(dǎo),培養(yǎng)學(xué)生良好學(xué)習(xí)習(xí)慣
教師在上課時,重點內(nèi)容要指導(dǎo)學(xué)生做筆記、要求學(xué)生錯題及時改正,揭示解題規(guī)律與方法,并小結(jié)應(yīng)注意的問題,培養(yǎng)學(xué)生上課積極思考問題,作業(yè)獨立完成,以及解后反思,章末小結(jié)的良好學(xué)習(xí)品質(zhì)。
4.教師上課教態(tài)應(yīng)和謁,講授基本概念與方法須耐心、細致,切忌急躁、冒進
初中學(xué)生都是帶著一種好奇與向往之心來到高中的。他們即使基礎(chǔ)較差,但都渴望在高中階段取得理想成績。如果教師一開始講授過快,過難,多數(shù)學(xué)生會跟不上,學(xué)生滿腔的熱情可能會因幾次課聽不懂,幾次考試成績不佳而降到“冰點”。因此,教師除“低起點,小步子”進行教學(xué)外,還應(yīng)及時了解學(xué)生,多與學(xué)生溝通,正面鼓勵學(xué)生,耐心、細致地為學(xué)生講清基礎(chǔ)知識與方法。
5.進行題型歸納,加強規(guī)范訓(xùn)練,注重知識落實
如上完“函數(shù)單調(diào)性”新課后,利用單調(diào)性定義判斷、證明函數(shù)單調(diào)性應(yīng)進行專題訓(xùn)練,掌握其基本步驟,再補充“復(fù)合函數(shù)單調(diào)性的判斷與證明”、“閉區(qū)間上二次函數(shù)最值求法”、“粗象函數(shù)問題”三個專題,讓學(xué)生掌握函數(shù)單調(diào)性典型例題與解法。
在平時教學(xué)中教師要注重解題規(guī)范性與條理性訓(xùn)練,典型例題詳細講解,完整板書,做學(xué)生的典范。對學(xué)生演板和作業(yè)中不規(guī)范的地方,教師應(yīng)及時指正,閱卷中應(yīng)嚴格扣去不規(guī)范的分。教師布置的作業(yè)一定要檢查,批改后及時反饋,教師講得再好,學(xué)生練習(xí)不到位,就不能實現(xiàn)從“懂”到“會”的質(zhì)的飛躍。
【關(guān)鍵詞】高二數(shù)學(xué);重要性;方法歸納
一、高二數(shù)學(xué)與高一數(shù)學(xué)的不同之處
與初中的數(shù)學(xué)相比,高中的數(shù)學(xué)相對來說概念抽象、習(xí)題繁多、教學(xué)密度大,高一過后,一些同學(xué)對數(shù)學(xué)望而生畏。高一階段的知識點非常多,可以說高一階段的知識比整個初中的知識點還要多,那么到了高二,是否知識更多更難呢?
首先,高一階段與高二階段對知識的側(cè)重點不一樣。高一階段的知識側(cè)重的是理解,而高二階段強調(diào)的是技巧,而并非在于內(nèi)容的難易程度。其次,高二數(shù)學(xué)的很多知識點是對高一知識的強化、深化與展開。例如:高一階段學(xué)習(xí)的函數(shù)的相關(guān)性質(zhì),其中很重要的就是單調(diào)性。在高一階段時,我們對這個知識點的要求是會用“比較法”判斷單調(diào)性,并通過對圖像的分析來對函數(shù)單調(diào)性有直觀的感受,到了高二階段,就要學(xué)習(xí)一種新的T具――導(dǎo)數(shù),也就是我們不用做函數(shù)圖像,也不用“取點比較”的情況下能直接判斷函數(shù)的單調(diào)性和單調(diào)區(qū)間。這種處理問題的新方法需要的就是熟練掌握技巧和扎實的基本功。在幾何方面的不同之處有:高一階段我們學(xué)的是直線和網(wǎng),屬于解析幾何的初始,但在高二階段,對于幾何的學(xué)習(xí)就更加復(fù)雜了,如類曲線――橢圓、雙曲線、拋物線。圖形復(fù)雜且運算的難度大大增加另外立體幾何中還要引入空間向量的方法,實際也是把幾何問題代數(shù)化,使同學(xué)用在復(fù)雜的立體圖形中找輔助線了,當然,空間向量法帶來的運算量也是相當大的。最后,在一些小的知識點上也有所深化,初學(xué)學(xué)習(xí)概率時,沒有學(xué)習(xí)任何的計算方法,算概率的時候只能一個一個的數(shù)出來,如果題目的數(shù)稍微大一點的話我們就要浪費大量的時間在數(shù)數(shù)上,在高二我們學(xué)習(xí)了計數(shù)原理,將能徹底搞清楚生活中的隨機事件里究竟蘊含了怎樣的數(shù)學(xué)原理。
二、學(xué)好高二數(shù)學(xué)的重要性
高二數(shù)學(xué)的難度要比高一大的多。同學(xué)們在高一的時候?qū)λ鶎W(xué)知識深入理解,高二階段便是塒所學(xué)知識的鞏同練習(xí)與深化的一個階段。如果有些同學(xué)高一階段知識學(xué)習(xí)的不夠扎實,高二階段便是唯一可能跟進與提高的機會,因為高二是深化學(xué)習(xí)、練習(xí)與鞏同過程,既是學(xué)習(xí)過程又是復(fù)習(xí)的過程。高中階段學(xué)習(xí)節(jié)奏之快使得一開始落后一點的同學(xué)在之后的學(xué)習(xí)過程中幾乎沒有什么時間可以再回過頭來重新學(xué)習(xí),也就是說如果想補救之知識漏洞,高中階段唯一可行的辦法就是在學(xué)習(xí)中復(fù)習(xí)。高二這個階段是需要大量做題,大量練習(xí)的階段,錯過了這個階段就再也沒有機會超越別人。很多人想高三再努力也還來得及,這種想法是錯誤的。高三的時候,人人都拼命的學(xué)習(xí),強化,想要超越別人幾乎是不可能的,你努力也只能保證你的成績不下降。也就是說你若想追上別人,想超過別人,高二已經(jīng)是最后的機會了。
三、學(xué)好高二數(shù)學(xué)的方法歸納
我個人觀點是要學(xué)好數(shù)學(xué)最關(guān)鍵的是要學(xué)數(shù)學(xué)思想,那么,什么是數(shù)學(xué)思想呢?所謂的數(shù)學(xué)思想,是指人們對數(shù)學(xué)理論與內(nèi)容的本質(zhì)認識,是從某些具體數(shù)學(xué)認識過程中提煉出的一些觀點,它揭示了數(shù)學(xué)發(fā)展中普遍的規(guī)律,它直接支配著數(shù)學(xué)的實踐活動,這是對數(shù)學(xué)規(guī)律的理性認識。學(xué)數(shù)學(xué)最好的方法就是深入的掌握基本概念,因為這關(guān)系到你看問題是否透徹。練習(xí)是必要的但不是最重要的,因為它只是深化和鞏固你所學(xué)的認識。因此學(xué)數(shù)學(xué)是更深入地理解各個知識點,多加鞏固每一道題都是一種思想的體現(xiàn),在不斷的做題過程中,把自己的認識和別人的思想結(jié)合起來就融匯成自己的思想了。
培養(yǎng)良好的學(xué)習(xí)習(xí)慣。良好的學(xué)習(xí)習(xí)慣包括制定計劃、課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)等多個方面。養(yǎng)成良好的學(xué)習(xí)習(xí)慣是學(xué)生掌握科學(xué)的學(xué)習(xí)方法的重要過程;是強化學(xué)生心理素質(zhì)的前提;是學(xué)生獲得技能的基礎(chǔ)。
培養(yǎng)對數(shù)學(xué)濃厚的興趣。數(shù)學(xué)的學(xué)習(xí)其實不難,關(guān)鍵是你是否愿意去嘗試。當你敢于猜想,說明你具備數(shù)學(xué)的思維能力;而當你能驗汪猜想,則說明你已具備了學(xué)習(xí)數(shù)學(xué)的天賦!認真地學(xué)好高二數(shù)學(xué),你能領(lǐng)悟列的還有怎么用最少的材料做滿足要求的物件,如何配置資源并投人生產(chǎn)才能獲得最多利潤……,因此,當你陷人數(shù)學(xué)魅力的“圈套”后,你已經(jīng)開始走上學(xué)好數(shù)學(xué)的第一步!
培養(yǎng)分析、推斷能力。其實,數(shù)學(xué)不是知識性、經(jīng)驗性的學(xué)科,而是思維性的學(xué)科,高中數(shù)學(xué)就充分體現(xiàn)了這一特點。數(shù)學(xué)的學(xué)習(xí)重在培養(yǎng)觀察、分析和推斷能力,開發(fā)學(xué)習(xí)者的創(chuàng)造能力和創(chuàng)新思維。因此,我們在學(xué)習(xí)數(shù)學(xué)的過程中,就要有意識地培養(yǎng)這些能力。
嘗試一些新的學(xué)習(xí)方法,因為不同學(xué)習(xí)程度的學(xué)生需要用不同的學(xué)習(xí)方法。如果你正因為數(shù)學(xué)的學(xué)習(xí)狀態(tài)低迷而苫惱,請按如下要求去做:通過預(yù)習(xí)后,帶著問題聽老師講課,對你的學(xué)習(xí)能起到事半功倍的效果;對自己做出的作業(yè)太追求完美是很難達到的,出錯并認真訂正才更合理;老師要求的練習(xí)并不是“題?!?,在完成老師的作業(yè)的同時,應(yīng)當做一些配套的練習(xí);考試時,正確率和做題的速度一樣重要,因此,做題的時候碰到難題、應(yīng)當及時放棄,轉(zhuǎn)入下一題,及時避難就易放棄一些難題,能幫助你發(fā)揮正常水平。
如果你正因為數(shù)學(xué)的學(xué)習(xí)成績進步緩慢而郁悶,那么請接受如下建議:收集你自己做過的錯題,訂正并寫清錯誤的原因,這些材料是屬于你個人的財富;對于考試成績,給自己定一個能接受的底線,定一個力所能及的奮斗目標;養(yǎng)成良好的學(xué)習(xí)習(xí)慣、有計劃性的學(xué)習(xí),將使你的學(xué)習(xí)成績穩(wěn)固前進,因此,請指定好學(xué)習(xí)計劃并堅持執(zhí)行下去吧,對各個學(xué)科的學(xué)習(xí)時間進行規(guī)劃、合理的分配。術(shù)進行合理的分配,同步前進形成了很多同學(xué)都有偏科的現(xiàn)象,對某一知識領(lǐng)域的學(xué)習(xí)出現(xiàn)“高原現(xiàn)象”。參考文獻:
一、知識結(jié)構(gòu)
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)、減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系.
(2)函數(shù)奇偶性的概念。包括奇函數(shù)、偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)、偶函數(shù)的圖像.
二、重點難點分析
(1)本節(jié)教學(xué)的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與認識.教學(xué)的難點是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),掌握單調(diào)性的證明.
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準確的數(shù)學(xué)語言去刻畫它.這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點下功夫.單調(diào)性的證明是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證明,也沒有意識到它的重要性,所以單調(diào)性的證明自然就是教學(xué)中的難點.
三、教法建議
(1)函數(shù)單調(diào)性概念引入時,可以先從學(xué)生熟悉的一次函數(shù),,二次函數(shù).反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性認識出發(fā),通過問題逐步向抽象的定義靠攏.如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點的坐標的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來.在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的認識就可以融入其中,將概念的形成與認識結(jié)合起來.
(2)函數(shù)單調(diào)性證明的步驟是嚴格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,特別是在第三步變形時,讓學(xué)生明確變換的目標,到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標為選題的標準,以便幫助學(xué)生總結(jié)規(guī)律.
函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達式寫出來.經(jīng)歷了這樣的過程,再得到等式時,就比較容易體會它代表的是無數(shù)多個等式,是個恒等式.關(guān)于定義域關(guān)于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關(guān)于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件.
函數(shù)的奇偶性教學(xué)設(shè)計方案
教學(xué)目標
1.使學(xué)生了解奇偶性的概念,回會利用定義判斷簡單函數(shù)的奇偶性.
2.在奇偶性概念形成過程中,培養(yǎng)學(xué)生的觀察,歸納能力,同時滲透數(shù)形結(jié)合和特殊到一般的思想方法.
3.在學(xué)生感受數(shù)學(xué)美的同時,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神.
教學(xué)重點,難點
重點是奇偶性概念的形成與函數(shù)奇偶性的判斷
難點是對概念的認識
教學(xué)用具
投影儀,計算機
教學(xué)方法
引導(dǎo)發(fā)現(xiàn)法
教學(xué)過程
一.引入新課
前面我們已經(jīng)研究了函數(shù)的單調(diào)性,它是反映函數(shù)在某一個區(qū)間上函數(shù)值隨自變量變化而變化的性質(zhì),今天我們繼續(xù)研究函數(shù)的另一個性質(zhì).從什么角度呢?將從對稱的角度來研究函數(shù)的性質(zhì).
對稱我們大家都很熟悉,在生活中有很多對稱,在數(shù)學(xué)中也能發(fā)現(xiàn)很多對稱的問題,大家回憶一下在我們所學(xué)的內(nèi)容中,特別是函數(shù)中有沒有對稱問題呢?
(學(xué)生可能會舉出一些數(shù)值上的對稱問題,等,也可能會舉出一些圖象的對稱問題,此時教師可以引導(dǎo)學(xué)生把函數(shù)具體化,如和等.)
結(jié)合圖象提出這些對稱是我們在初中研究的關(guān)于軸對稱和關(guān)于原點對稱問題,而我們還曾研究過關(guān)于軸對稱的問題,你們舉的例子中還沒有這樣的,能舉出一個函數(shù)圖象關(guān)于軸對稱的嗎?
學(xué)生經(jīng)過思考,能找出原因,由于函數(shù)是映射,一個只能對一個,而不能有兩個不同的,故函數(shù)的圖象不可能關(guān)于軸對稱.最終提出我們今天將重點研究圖象關(guān)于軸對稱和關(guān)于原點對稱的問題,從形的特征中找出它們在數(shù)值上的規(guī)律.
二.講解新課
2.函數(shù)的奇偶性(板書)
教師從剛才的圖象中選出,用計算機打出,指出這是關(guān)于軸對稱的圖象,然后問學(xué)生初中是怎樣判斷圖象關(guān)于軸對稱呢?(由學(xué)生回答,是利用圖象的翻折后重合來判定)此時教師明確提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律?
學(xué)生開始可能只會用語言去描述:自變量互為相反數(shù),函數(shù)值相等.教師可引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示.(借助課件演示令比較得出等式,再令,得到,詳見課件的使用)進而再提出會不會在定義域內(nèi)存在,使與不等呢?(可用課件幫助演示讓動起來觀察,發(fā)現(xiàn)結(jié)論,這樣的是不存在的)
從這個結(jié)論中就可以發(fā)現(xiàn)對定義域內(nèi)任意一個,都有成立.最后讓學(xué)生用完整的語言給出定義,不準確的地方教師予以提示或調(diào)整.
(1)偶函數(shù)的定義:如果對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做偶函數(shù).(板書)
(給出定義后可讓學(xué)生舉幾個例子,如等以檢驗一下對概念的初步認識)
提出新問題:函數(shù)圖象關(guān)于原點對稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢?(同時打出或的圖象讓學(xué)生觀察研究)
學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義.
(2)奇函數(shù)的定義:如果對于函數(shù)的定義域內(nèi)任意一個,都有,那么就叫做奇函數(shù).(板書)
(由于在定義形成時已經(jīng)有了一定的認識,故可以先作判斷,在判斷中再加深認識)
例1.判斷下列函數(shù)的奇偶性(板書)
(1);(2);
(3);;
(5);(6).
(要求學(xué)生口答,選出1-2個題說過程)
解:(1)是奇函數(shù).(2)是偶函數(shù).
(3),是偶函數(shù).
前三個題做完,教師做一次小結(jié),判斷奇偶性,只需驗證與之間的關(guān)系,但對你們的回答我不滿意,因為題目要求是判斷奇偶性而你們只回答了一半,另一半沒有作答,以第(1)為例,說明怎樣解決它不是偶函數(shù)的問題呢?
學(xué)生經(jīng)過思考可以解決問題,指出只要舉出一個反例說明與不等.如即可說明它不是偶函數(shù).(從這個問題的解決中讓學(xué)生再次認識到定義中任意性的重要)
從(4)題開始,學(xué)生的答案會有不同,可以讓學(xué)生先討論,教師再做評述.即第(4)題中表面成立的=不能經(jīng)受任意性的考驗,當時,由于,故不存在,更談不上與相等了,由于任意性被破壞,所以它不能是奇偶性.
教師由此引導(dǎo)學(xué)生,通過剛才這個題目,你發(fā)現(xiàn)在判斷中需要注意些什么?(若學(xué)生發(fā)現(xiàn)不了定義域的特征,教師可再從定義啟發(fā),在定義域中有1,就必有-1,有-2,就必有2,有,就必有,有就必有,從而發(fā)現(xiàn)定義域應(yīng)關(guān)于原點對稱,再提出定義域關(guān)于原點對稱是函數(shù)具有奇偶性的什么條件?
可以用(6)輔助說明充分性不成立,用(5)說明必要性成立,得出結(jié)論.
(3)定義域關(guān)于原點對稱是函數(shù)具有奇偶性的必要但不充分條件.(板書)
由學(xué)生小結(jié)判斷奇偶性的步驟之后,教師再提出新的問題:在剛才的幾個函數(shù)中有是奇函數(shù)不是偶函數(shù),有是偶函數(shù)不是奇函數(shù),也有既不是奇函數(shù)也不是偶函數(shù),那么有沒有這樣的函數(shù),它既是奇函數(shù)也是偶函數(shù)呢?若有,舉例說明.
經(jīng)學(xué)生思考,可找到函數(shù).然后繼續(xù)提問:是不是具備這樣性質(zhì)的函數(shù)的解析式都只能寫成這樣呢?能證明嗎?
例2.已知函數(shù)既是奇函數(shù)也是偶函數(shù),求證:.(板書)(試由學(xué)生來完成)
證明:既是奇函數(shù)也是偶函數(shù),
=,且,
=.
,即.
證后,教師請學(xué)生記住結(jié)論的同時,追問這樣的函數(shù)應(yīng)有多少個呢?學(xué)生開始可能認為只有一個,經(jīng)教師提示可發(fā)現(xiàn),只是解析式的特征,若改變函數(shù)的定義域,如,,,,它們顯然是不同的函數(shù),但它們都是既是奇函數(shù)也是偶函數(shù).由上可知函數(shù)按其是否具有奇偶性可分為四類
(4)函數(shù)按其是否具有奇偶性可分為四類:(板書)
例3.判斷下列函數(shù)的奇偶性(板書)
(1);(2);(3).
由學(xué)生回答,不完整之處教師補充.
解:(1)當時,為奇函數(shù),當時,既不是奇函數(shù)也不是偶函數(shù).
(2)當時,既是奇函數(shù)也是偶函數(shù),當時,是偶函數(shù).
(3)當時,于是,
當時,,于是=,
綜上是奇函數(shù).
教師小結(jié)(1)(2)注意分類討論的使用,(3)是分段函數(shù),當檢驗,并不能說明具備奇偶性,因為奇偶性是對函數(shù)整個定義域內(nèi)性質(zhì)的刻畫,因此必須均有成立,二者缺一不可.
三.小結(jié)
1.奇偶性的概念
2.判斷中注意的問題
四.作業(yè)略
五.板書設(shè)計
2.函數(shù)的奇偶性例1.例3.
(1)偶函數(shù)定義
(2)奇函數(shù)定義
(3)定義域關(guān)于原點對稱是函數(shù)例2.小結(jié)
具備奇偶性的必要條件
(4)函數(shù)按奇偶性分類分四類
探究活動
(1)定義域為的任意函數(shù)都可以表示成一個奇函數(shù)和一個偶函數(shù)的和,你能試證明之嗎?
(2)判斷函數(shù)在上的單調(diào)性,并加以證明.
一、例證性引導(dǎo)
目前,普通高中面對傳統(tǒng)的教學(xué)模式,教師有不少困難?,F(xiàn)行高中數(shù)學(xué)教材理論性強,運算要求高。從一開始,就出現(xiàn)了概念抽象、定理嚴謹、邏輯性強,尤其是教材敘述比較嚴謹、規(guī)范,抽象思維和空間想象明顯提高、知識難度加大,且課本習(xí)題及復(fù)習(xí)題量大、多,解題技巧靈活多變、計算繁冗復(fù)雜、體現(xiàn)了“起點高、難度大、容量多”的特點,很多同學(xué)一下子就“蒙了”,一時找不到學(xué)習(xí)的方向了。且對不少學(xué)生來說“學(xué)不進去”,“學(xué)了也無用”,導(dǎo)致教與學(xué)陷人困境,大大地挫傷了他們學(xué)習(xí)數(shù)學(xué)的積極性,也嚴重地影響了普通高中數(shù)學(xué)的教學(xué)質(zhì)量,這顯然與素質(zhì)教育要求背道而馳。為了使學(xué)生具體理解數(shù)學(xué)中的某些概念、法則,可啟發(fā)學(xué)生對列舉的具體事例進行認識,從而激發(fā)學(xué)習(xí)興趣,把抽象的概念形象化。例如研究直線方程時,可先引導(dǎo)學(xué)生舉一些直線方程的例子,并畫出這些直線方程的圖像,再根據(jù)圖像寫出斜截式、截距式。從而把斜截式、截距式,這些抽象的概念形象化,使學(xué)生輕松地掌握這些概念。
二、示范性引導(dǎo)
在學(xué)生百思不解、陷入解題困境的情況下,教師適時深入淺出的點撥,要做到有的放矢,適時引導(dǎo)、解惑。不僅解決疑難問題,而且在分析思考問題的方法上受到啟發(fā)。例如,在高一新生學(xué)習(xí)函數(shù)的單調(diào)性時:在Rk的函數(shù)f(x),對任意x,y∈R,滿足f(X+y)=f(x)+f(y),當X>0時,f(x)
在同學(xué)獨立自學(xué)、互動探究的基礎(chǔ)上,引導(dǎo)學(xué)生使用賦值法,在解題時結(jié)合單調(diào)性的定義求解,特別是在處理,(fx1)與f(x2)的關(guān)系時學(xué)生很難想到f(x2)=f((X2-X1)+X1)=f(X-X1)+f(x1)<f(x1)。教師給予及時引導(dǎo),使學(xué)生有撥開云霧見晴天之感覺。
!j然,教師在講解知識過程中要做好專題總結(jié)、分析知識過程中可講解各種方法,如換元思想、數(shù)形結(jié)合、化歸、函數(shù)與方程思想等各種思想方法,都能對學(xué)生起到示范性的作用。
三、拓展性引導(dǎo)
拓展性引導(dǎo)是對問題相關(guān)聯(lián)或更深層次的內(nèi)容進行描述講解,可以是一題多變,引導(dǎo)學(xué)生明確思維方向,打開思維,由淺人深,挖掘內(nèi)涵,開拓了學(xué)生的視野。比如,在高一學(xué)習(xí)函數(shù)單調(diào)性時舉例:函數(shù)f(x)是定義在(O,+8)上的增函數(shù),且f(m)>f(2m-3)。求m的取值范圍。在教師引導(dǎo)學(xué)生解決問題后,適時進行拓展:函數(shù)f(x)=ax2-x在[0,1]上是單調(diào)減函數(shù),求實數(shù)。的取值范圍。自然地把學(xué)生的思維進一步地引向深入。通過舉一反三的引導(dǎo)。學(xué)生的思維方向明確,運用已有知識和方法,問題就不難解決了。
四、糾誤性引導(dǎo)
針對學(xué)生學(xué)習(xí)過程中容易發(fā)生的錯誤,選編一些題目有意制造一些“陷阱”讓學(xué)生解錯,然后要求學(xué)生自己總結(jié)經(jīng)驗教訓(xùn),從而引發(fā)學(xué)生深入思考。適時指點,讓學(xué)生思考并給出正確解答。
關(guān)鍵詞: 函數(shù)思想 方程思想 函數(shù)與方程思想 高一數(shù)學(xué)教學(xué)
高中階段的數(shù)學(xué)用到的基本思想有:函數(shù)與方程思想,分類討論思想,轉(zhuǎn)化與化歸思想,數(shù)形結(jié)合思想.而其中的函數(shù)與方程思想是每年高考的熱點之一,高中階段第一次出現(xiàn)在蘇教版必修一的第三章.所以深入研究函數(shù)與方程思想對學(xué)好數(shù)學(xué)起非常大的作用.
函數(shù)思想,就是運用運動和變化的觀點,集合與對應(yīng)的思想,分析和研究數(shù)學(xué)問題中的等量關(guān)系,建立或構(gòu)造函數(shù)關(guān)系,再運用函數(shù)的圖像和性質(zhì)分析問題,達到轉(zhuǎn)化問題的目的,從而使問題獲得解決的思想;方程思想,就是從問題的數(shù)量關(guān)系入手,運用數(shù)學(xué)語言將問題中的條件轉(zhuǎn)化為數(shù)學(xué)模型――方程或方程組,通過解方程或方程組,或者運用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決的思想.
函數(shù)與方程是密不可分的,函數(shù)y=f(x)中的f(x)如果為0,就可以轉(zhuǎn)化為方程f(x)=0.函數(shù)與方程思想就是把函數(shù)問題轉(zhuǎn)化為方程問題,例如求函數(shù)的零點可以轉(zhuǎn)化為求對應(yīng)方程的根,或者把方程問題轉(zhuǎn)化為函數(shù)問題來解決,例如求方程的根的個數(shù)可以轉(zhuǎn)化為求兩函數(shù)交點的個數(shù).蘇教版必修一的第三章引入的函數(shù)與方程思想,主要體現(xiàn)在求方程f(x)=0的實數(shù)根,就是確定函數(shù)y=f(x)的圖像與x軸交點的橫坐標,即函數(shù)y=f(x)的零點;求f(x)=g(x)的根或根的個數(shù)就是求函數(shù)y=f(x)與y=g(x)圖像的交點或交點個數(shù).
一、函數(shù)思想
所謂函數(shù)思想,就是在根據(jù)已知條件構(gòu)造函數(shù),通過研究函數(shù)的單調(diào)性、奇偶性等性質(zhì),解決問題的思想.
1.構(gòu)造函數(shù),利用函數(shù)的性質(zhì)答題.
例1:(1)比較大?。簂g15;lg6;6■,8■;(2)證明方程x?2■=1至少有一個小于1的正實根.
分析:(1)分別構(gòu)造函數(shù)y=lgx和y=x■,利用其單調(diào)性比較大??;(2)構(gòu)造函數(shù)f(x)=x?2■-1,驗證f(0)?f(1)的符號即可.
解:(1)構(gòu)造函數(shù)y=lgx,其在(0,+∞)內(nèi)是單調(diào)增函數(shù),因為15>6,所以lg15>lg6;構(gòu)造函數(shù)y=x■,其在(0,+∞)內(nèi)是單調(diào)增函數(shù),因為6>8,所以6■>8■;(2)令f(x)=x?2■-1,則f(x)的圖像在R上是一條連續(xù)不間斷的曲線.所以,f(0)=0×2■-1=-10.所以f(0)?f(1)
點評:解有關(guān)不等式、方程、比大小的問題,可以通過構(gòu)造函數(shù)關(guān)系式,借助函數(shù)的圖像和性質(zhì),使問題更直觀形象,充分利用數(shù)形結(jié)合、函數(shù)方程思想,為以后的學(xué)習(xí)奠定基礎(chǔ).
2.利用函數(shù)思想解答有關(guān)實際應(yīng)用題.
例2:某省兩相近重要城市之間人員交流頻繁,為了緩解交通壓力,特地修了一條專用鐵路,用一列火車作為交通車,已知該車每次拖4節(jié)車廂,一日能來回16次,如果每次拖7節(jié)車廂,則每日能來回10次.若每日來回的次數(shù)是車頭每次拖掛車廂節(jié)數(shù)的一次函數(shù),每節(jié)車廂能乘載乘客110人.問這列火車每天來回多少次才能使運營人數(shù)最多?并求出每天最多運營人數(shù).
分析:建立目標函數(shù),再求函數(shù)的最值.
解:設(shè)每日來回y次,每次掛x節(jié)車廂,由題意,再設(shè)y=kx+b(k≠0),
方程組16=4k+b10=7k+b,k=-2b=24,所以y=-2x+24.
由題意知,每日運營車廂節(jié)數(shù)最多時,運營人數(shù)最多,設(shè)每日運營S節(jié)車廂,則S=xy=x(-2x+24)=-2(x-6)■+72,所以當x=6時,S■=72,此時y=12.
則每日最多運營人數(shù)為7920人.
答:這列火車每天來回12次,才能使運營人數(shù)最多,每天最多運營人數(shù)為7920人.
點評:通過建立函數(shù)解決實際問題要注意定義域,根據(jù)定義域來求函數(shù)的最值.
二、方程思想
通過換元,構(gòu)成已經(jīng)學(xué)過的方程求解.
例3:關(guān)于x的方程9■+a?3■+3=0恒有解,求a的取值范圍.
分析:通過換元將其變?yōu)橐辉畏匠毯阌姓膯栴},同時利用韋達定理解題.
解:設(shè)3■=t,則t>0.由題意得,方程t■+a?t+3=0有正根,
所以Δ≥0x■+x■=-a>0x■x■=3>0即a■-4×3≥0a
點評:對于類似于一元二次方程的復(fù)雜方程,可以通過換元將問題轉(zhuǎn)化為已學(xué)過的方程求解.
三、函數(shù)方程思想
有的題目需要根據(jù)函數(shù)與方程之間的相互關(guān)系而互相轉(zhuǎn)換.
例4:(2008天津卷改編)設(shè)a>1,若對任意的x∈[a,2a],都有y∈[a,a■]滿足方程log■x+log■y=3,此時a的取值集合為?搖 ?搖.
分析:本題看上去是考查含參數(shù)的方程,實際上是以含參數(shù)方程為載體,考查函數(shù)的定義域、值域及函數(shù)思想,所以解這道題目的基本思路:方程問題函數(shù)化.由方程,可得xy=a■(x>0,y>0),把x看成自變量,y看成應(yīng)變量,可以得到函數(shù)y=a■/x在區(qū)間[a,2a]上單調(diào)遞減,所以函數(shù)y=a■/x在區(qū)間[a,2a]上的值域是[a■/2,a■],由題意∈[a■/2,a■]?哿[a,2a],所以a≤a■/2
關(guān)鍵詞:高中數(shù)學(xué);微課;影響;策略
中圖分類號:G632 文獻標識碼:B 文章編號:1002-7661(2015)16-343-01
微課是微時代的必然產(chǎn)物。在微博、微信、微電影等成為現(xiàn)代人們生活不可缺少的一部分的今天,微課成為新時期下教育教學(xué)工作者們對教育教學(xué)的思考、探索和運用,成為“微時代”下的教育界的創(chuàng)新。
一、初識微課,構(gòu)建翻轉(zhuǎn)課堂
微課(Micro class)也叫微型課堂,最早是由美國的David Penrose于2008年率先提出。其主要學(xué)習(xí)形式是在線學(xué)習(xí)、移動學(xué)習(xí)。從教學(xué)方面看,微課就是將某一個重點、難點、考點、疑點等以精彩的片段錄制下來,并上傳到網(wǎng)絡(luò)上,讓其他老師或者學(xué)生利用業(yè)余時間而實現(xiàn)網(wǎng)絡(luò)資源的共享。
微課關(guān)鍵詞是“微”即“小”的意思。微課與傳統(tǒng)課堂的主要區(qū)別,就在于傳統(tǒng)課堂是一節(jié)課45分鐘,教學(xué)內(nèi)容多,而微課 “精”而短小,內(nèi)容雖然少而小,但作用大且使用方便和快捷,學(xué)生對于在課堂上沒有掌握的知識點,課后只要打開相關(guān)視頻,就可以對自己的所學(xué)的知識給以補充。當然,微視頻的大量、豐富的網(wǎng)絡(luò)資源,學(xué)生可以體會交流,并相互提出問題、相互提出解決的辦法等,使學(xué)生成為課堂的主人,徹底改變傳統(tǒng)的教學(xué)形式,實現(xiàn)“翻轉(zhuǎn)課堂”。
二、微課對高中數(shù)學(xué)教學(xué)的影響
傳統(tǒng)的數(shù)學(xué)課堂教師對數(shù)學(xué)的定義、定理、公理、公式等進行講解、證明、推導(dǎo),而新課改下的微課,能使學(xué)生改變被動接受知識的學(xué)習(xí)方式,轉(zhuǎn)變?yōu)橹鲃痈鶕?jù)自己所學(xué)習(xí)的薄弱環(huán)節(jié)而針對性主動進行網(wǎng)上學(xué)習(xí),通過反復(fù)觀看視頻,實現(xiàn)學(xué)會到會學(xué)的根本轉(zhuǎn)變。在課堂上,老師不再是 “傳道”、“授業(yè)”的高高在上的“尊者”,而是引導(dǎo)學(xué)生質(zhì)疑、析疑、引導(dǎo)學(xué)生形成穩(wěn)定的數(shù)學(xué)認知能力。
高中數(shù)學(xué)《集合的含義與表示》,這節(jié)課的“集合”的概念較抽象,課堂上一知半解的恐怕不是少數(shù),這點每一位高一數(shù)學(xué)教師都會有同感,而集合是高一數(shù)學(xué)的起點,為以后學(xué)習(xí)函數(shù)等打下基礎(chǔ)。此時,微視頻可以彌補這個“缺口”,讓學(xué)生課前或者課后,打開網(wǎng)頁搜索并點擊王新敞的《集合的含義》微視頻,這個微視頻使學(xué)生對集合的概念和意義清楚把握,課堂上,教師無需再花費時間和學(xué)生們探討這一知識點,只需要探討學(xué)生的疑難問題,減輕了課堂負擔(dān),也改變了學(xué)生的學(xué)習(xí)方式。
三、微課在數(shù)學(xué)教學(xué)中的運用
1、課前運用微視頻,預(yù)習(xí)新課
在新課改實施以來,微課出現(xiàn)之前,學(xué)生的預(yù)習(xí)要受到關(guān)注,要求課堂教學(xué)重心前移,但那時的預(yù)習(xí)由于條件所限,教師發(fā)張預(yù)習(xí)學(xué)案,讓學(xué)生通過預(yù)習(xí)學(xué)案的完成而達到預(yù)習(xí)的目的,其中的利弊也很清楚,多數(shù)學(xué)生由于學(xué)習(xí)緊張,懶于預(yù)習(xí),互相抄抄而已,預(yù)習(xí)的效果不盡人意。
但是,隨著微時代的進步和發(fā)展,微課成為學(xué)生們預(yù)習(xí)的得力助手。教師可以把即將要上的課堂教學(xué)內(nèi)容分解為幾個小片段,分別錄制下來,發(fā)到網(wǎng)上,發(fā)到學(xué)生的QQ群里,或者提供網(wǎng)上現(xiàn)成的與之相關(guān)的微視頻課程,讓學(xué)生選擇性收看和學(xué)習(xí)。這樣的預(yù)習(xí),讓學(xué)生逐漸學(xué)會如何預(yù)習(xí),并逐漸學(xué)會利用網(wǎng)絡(luò)資源,豐富學(xué)習(xí)內(nèi)容,逐漸養(yǎng)成自主學(xué)習(xí)的良好習(xí)慣,課前將要學(xué)習(xí)的內(nèi)容基本掌握,并學(xué)會在預(yù)習(xí)過程中學(xué)會質(zhì)疑、學(xué)會積累自學(xué)經(jīng)驗、品嘗自學(xué)的快樂和成功的感受。
如教學(xué)必修一的《函數(shù)的單調(diào)性》前,教師通過對這節(jié)課的重難點全面把握的基礎(chǔ)上,將主要內(nèi)容分為:情境法引出增函數(shù)、減函數(shù)的定義;如何證明函數(shù)的單調(diào)性;證明函數(shù)的單調(diào)性的基本步驟;函數(shù)單調(diào)性的練習(xí)鞏固等幾個部分,每一個部分教師簡明扼要地講解,每一個小部分講解的時間在5-8分鐘,錄制為視頻形式,公布給學(xué)生,利于學(xué)生有針對性地選擇學(xué)習(xí),并對難點和重點可以反復(fù)點重播,直至學(xué)會、看懂為止。
這樣的自學(xué)方式,徹底改變了看書、做題的單一性,豐富了學(xué)習(xí)的渠道,真正實現(xiàn)和凸顯了教學(xué)重心的前移,學(xué)習(xí)方式的改變,踐行了翻轉(zhuǎn)課堂理念,使學(xué)生逐漸學(xué)會到會學(xué)的根本轉(zhuǎn)變、樂學(xué)的質(zhì)的飛躍。
2、課堂教學(xué)中使用微課,創(chuàng)設(shè)情境和解決重難點。
(1)利用微課,創(chuàng)設(shè)情境
情境教學(xué)備受教師們青睞。微課展示情境比教師用多媒體創(chuàng)設(shè)情境、用語言創(chuàng)設(shè)情境更逼真、更有效。如學(xué)習(xí)《指數(shù)函數(shù)》時,用微視頻展示放射性物質(zhì)的衰變的過程,吸引學(xué)生的注意力,激發(fā)學(xué)生探究的欲望。
(2)運用微課,克服重難點
數(shù)學(xué)知識抽象、難以理解,尤其是高中數(shù)學(xué),難點較多,這些難點成為學(xué)生構(gòu)建知識的障礙,對此,對這些重點和難點制作程微視頻,或者鏈接網(wǎng)站上的微視頻,讓生動、形象、直觀的微課為克服這些重、難點推波助瀾。
如學(xué)習(xí)《函數(shù)的圖像和性質(zhì)》時,借助于幾何畫板和PPT,制成課件,展示給學(xué)生,使靜態(tài)的函數(shù)圖像變成動態(tài)的生成,使抽象的圖像變成直觀、形象的演示,使枯燥的知識生動風(fēng)趣,容易構(gòu)建知識和掌握。
3、課后運用微課,鞏固所學(xué)的知識